HYDROGEOLOGY OF THE PACIFIC NORTHWEST A SUMMARY DISCUSSION

NGWA Pacific NW Expo – February 2012

Presented by:

F. Michael Krautkramer, LHG, RG, CPG

Robinson Noble, Inc. www.robinson-noble.com

The Pacific Northwest is a complicated area

Physiographic regions of the Pacific Northwest

USGS National Groundwater Atlas

Whitehead, R.L. 1994. Ground Water Atlas of the United States: Idaho, Oregon, Washington. US Geological Survey Report HA 730-H. http://pubs.usgs.gov/ha/ha730/ch_h/index.html

Precipitation – where it all starts

Water use by area (million gallons per day)

Distribution by type of use

Hydrogeology of the Pacific Northwest

The third dimension ...

What do we mean by "aquifer?"

You can think of an aquifer as something that "is"

• Something in the ground that <u>contains</u> water

or

You can think of an aquifer as a set of processes that are happening

Something that <u>moves</u> water

Plumbing analogy (simple version)

Aquifers are usually part of larger systems

These concepts are a good way to look at aquifers

- Some aquifers have good storage characteristics but small inflow pipes
- Some have very good transmission ability but little storage
- Some are marginal all around

• LET'S KEEP THIS IN MIND AS WE GO FORWARD

Aquifer topics

Three specific aquifer systems:

- Snake River Plain Aquifer System
- Columbia Basin Basalt Aquifer System
- Puget Willamette Trough Aquifer Systems

Four generalized aquifer systems:

- Valley fill
- Basin fill
- Fractured rock
- Coastal aquifers

The Snake River Plain Aquifer

Snake River Plain basalts

- This area has some of the most productive wells in the world
- Wells tend to be shallower than in the Columbia Plateau
- Relatively young rock 500,000 to as little as a few thousand years ago
- Covers nearly 16,000 mi² including sediment dominated area to the west
- Basalt flows and unconsolidated units are interbedded

Snake River Plain basalts (continued)

- Basalt flowed from large fissures as very fluid lava (much like the Hawaiian flows of today)
- Flows are permeable at the top and bottom and not permeable in the centers
- Many flows stacked one on the other with sediments sometimes laid down between flows
- As much as 3,000 feet thick in the middle of the area thinning to the edges (average flow thickness about 25 feet)

Snake River Plain Aquifer hydrology

- Medium recharge over a large area
- Huge storage capability
- Outflows focused mostly along primary streams and Snake river
- Recharge is fairly uniform over the full 16,000 square mile area but low
- Very high production from wells (up to 7,000 gpm reported)

Water from basalt

Regulatory issues in the Snake River Plain

- A water right is needed to use the water
- "Water Calls" causing problems in some areas

I need some help here. Can some of you answer these questions:

What drilling rules apply?

What are the procedures for a typical drilling project?

Open discussion on Snake River Plain

The Columbia River Basalt aquifers

Columbia River Basalt Group

Much older than the Snake River Plain basalts (16.5 to 6 million years old)

Very thick sequence with hundreds of individual flows

The basalts are divided into three formations:

- more than 85% is Grand Ronde (16.5 to 15.6 my)
- 5-10% Wanapum (15.5 to 14.5 my)
- 1% Saddle Mountains (14 to 6 my)

Columbia River Basalt Group

- 3 Formations typically discussed
- Each Formation with many members
- Each member with many flows

Serie	es	Group	Formation	Member	Isotopic Age (m. y.)	Magnetic Polarity
T				Lower Monumental Member	6	N
		Columbia River Basalt Group	Saddle Mountains Basalt	Ice Harbor Member	8.5	
	5			Basalt of Goose Island		N
	5			Basalt of Martindale		R
1	-			Basalt of Basin City		N
				Buford Member		R
H	-			Elephant Mountain Member	10.5	RT
				Pamana Member	12	R
				Esquatzel Member		N
				Weissnefels Ridge Member		
				Result of Slinnery Rock		N
				Basalt of Tennile Creek		N
				Basalt of Lewiston Orchanis		N
				Basalt of Cloverland		N
				Asotin Member	13	
				Result of Huntzinger		N
				Wilher Creek Member		
				Baralt of Lanuari		N
				Basalt of Wahluke		N
				Umatilla Mamber	13.5	N
				Baselt of Sillusi	13.5	N
				Baselt of Umstills Member		N
				Print Danide Member	14.5	N
	1			Basalt of Lolo	14.0	P
	z		Wanapum	Baselt of Rocalia		P
			Basalt	Dava Mambar		TP
				Shumakar Creak Mambar		1,K
				Frenchman Springe Member		N
8				Prenchman Springs Member		
				Datable of Continue Cont		N
				Basili of Send Hollow	16.2	N
				Basait of Sand Hollow	15.3	N
				Basalt of Silver Falls		N,E
				Baselt of Unikgo		E
				Eabler Memorie Member		Б
				People of Daday		
				Basili of Dodge		N
				Dasalt of Kobinette Mountain		N
				vanlage Horizon	167	
			Grande Ronde Basalt	- Member of Sentinel Bluffs	15.6	
				Member of Stack Canyon		
				Member of Field Springs	-	N ₂
H				- Member of Winter Water		
				- Member of Umtanum		
				Member of Orbey		
				Member of Armstrong Canyon		
				Member of Meyer Ridge		
				Member of Grouse Creek		R ₂
				Member of Wapshilla Ridge		
	2			Member of Mt. Horrible		
	ŝ			Member of China Creek		N
				Member of Downey Guich		
				Member of Center Creek		
				Member of Rogersburg		R ₁
				Member of Teepee Butte		
				Member of Buckhorn Springs	16.5	
			Imnaha Basalt			R,
						Т
						N _e
					17.5	R

Nomenclature of the Columbia River Basalt Group (from Reidel and others, 2002)

Columbia River Basalts

- Flowed from fissures near the tri-state corner
- Thick and laterally extensive flows
- As much as 15,000 feet thick in central basin (over 300 separate flows)
- Interbedded sediment layers between flow events
- Permeable at flow tops & bottoms and in some interbedded sediments

Cross section of Columbia Plateau

Unconsolidated sediments – Columbia Basin

- The aquifer system includes overlying basinfill sediments
- Critical to recharge and irrigation return flow aspects
- Some very prolific wells

Columbia Basin aquifer hydrology

- Large recharge area but very low precipitation
- Additional recharge from the mountains and irrigation return flow
- Very large storage capacity
- Very good flow through the aquifers
- Well focused discharge to the Columbia and major tributaries
- Very large withdrawal from wells

Basalt aquifers – Columbia Basin

Figure 72. The Columbia Plateau regional aquifer system consists primarily of three basalt formations separated by confining units. Unconsolidated deposits that overlie the basalt formations also are a part of the aguifer system. The unconsolidated-deposit aguifers are a principal source of water for many wells and locally might be more permeable than the Miocene basaltic-rock aquifers. Collectively, however, the thick Miocene basaltic-rock aguifers generally yield more water than do the unconsolidated-deposit aguifers. Locally, the confining units can yield small volumes of water to wells. The line of the section is shown in figure 70.

Groundwater Flow - Columbia Plateau

Regulatory discussion

- Water right needed, sometimes a Bureau of Reclamation Certificate as well
- Some areas closed to further allocation (Odessa area, for instance)
- Water rights often require a specific target subgroup (i.e. must be Grande Ronde)
- Air rotary and reverse circulation drilling techniques are most typical
- YOU TELL ME!

Open discussion on Columbia Basin Aquifers

The Puget/Willamette Trough

Structural geology of the trough

Unconsolidated aquifers of the Puget Sound region

- Complex glacial and interglacial deposits
- Silt and clay interbedded with sand and gravel with a bunch of other stuff thrown in
- More than 2,000 feet thick in some places
- Multiple glaciations and interglacial periods

Geomorphology of Puget Sound area

Puget Sound sediments

Glacial materials

- Highly complex
- Laterally extensive but inconsistent
- Recessional and advance outwash, till, glacio-lacustrine deposits

Non-glacial materials

- Generally finer-grained than glacial sediments
- Usually form regional confining layers
- Occasionally form good aquifers

Puget Sound sediments (continued)

- Extremely complex, both laterally and with depth
- Locally, thin layers of clay and silt separate thin layers of sand and gravel
- Regionally, more permeable glacial sequences (100 feet and more) are separated by finergrained silt and clay of interglacial deposits (10s to 100s of feet thick)
- Aquifer characteristics are unpredictable even over short distances

Puget Sound aquifer hydrology

Flow through unconsolidated sediments

The timing of the flow varies

Regulatory discussion

- Water rights needed for all but "exempt wells"
- Surface water WACs and "Watershed Planning" can make water right acquisition tricky in areas
- No particular drilling or construction constraints beyond normal standards
- County regulations and delegated authority must be recognized

Discussion on Puget Sound sediments

Willamette Trough

- Structural basin
- Filled with unconsolidated and semi-consolidated sediments
- Centered around Portland

Willamette Trough: Portland area unconsolidated sediments

- Complex but non-glacial
- Valley-fill sequences of Willamette and Columbia Rivers
- Weirdness of the Bretz Floods (basin-fill?)
- Columbia River Basalts reaches beyond this basin to the Pacific
- Columbia River influences it all

Willamette Trough aquifers

Middle and Southern portions of the Puget-Willamette Trough

Lewis and Cowlitz Counties of Washington

- Generally lower production wells
- Thinner sediments
- Lower permeability, more clay-rich sediments
- Some very old glacial deposits (Logan Hill Fm.)

Willamette Basin south of Portland

- More river related depositional environments
- Bretz Floods resulted in lake deposits (and some ice-rafted erratics)

Portland Basin hydrology

- Locally high storage capacity
- complex inflow patterns
- Several regional (subregional) aquifers
- Discharge predominantly to Columbia River above where basalts close the basin
- High capacity wells for the west side of the Cascades (1,000+ gpm)

Regulatory discussion

- Water rights needed for all but exempt uses (15,000 gpd OR; 5,000 gpd WA)
- State-line allocation issues handled by special agreements
- Water rights written for specific aquifer zones

(I NEED YOUR INPUT HERE)

Discussion of the Willamette Trough sediments

Geographic vs. conceptual settings

- The Snake River Plain, Columbia River Basalt, and Puget Sound-Willamette Trough are related to the geology of a specific geographic area
- The remaining components are better considered as geologic/hydrologic concepts that apply to settings throughout the PNW

Unconsolidated valley-fill aquifers

Unconsolidated valley-fill aquifers (continued)

- These aquifers are generally long and narrow features with layers of channel gravel and layers of overbank silt and fine sand
- Often valleys are temporarily dammed and clay can be deposited
- Some valleys are glaciated (till, morainal deposits), some have mudflows
- All are laterally variable in geology and hydrology
- Shallow drilling generally, the bigger the valley, the deeper the sediment fill

Unconsolidated sediments

River valley aquifer hydrology

- Storage highly variable (but these aquifers do not usually dewater)
- Recharge and surface water continuity provide inflow
- Local discharge almost always to the surface water system (sometimes a long way downstream)
- Withdrawal from wells generally will influence streams in some way

Regulatory discussion

- The interconnection of groundwater and surface water dominates concerns
- Where instream flows are set, mitigation virtually always required for water rights
- Even exempt wells are being limited in some places due to stream concerns
- Well construction in flood plains or flood ways may have specific sealing needs
- Valley aquifers are often regional discharge points base flow to the stream

Open discussion on valley-fill aquifers

Basin-fill sediments (alluvial fans, lake sediments, etc.)

Sediment-filled basins of the Pacific Northwest

Sediment-filled basins over basalt aquifers

- Many basins in the Columbia Plateau and Snake Plain Regions
- Sediments usually hundreds of feet thick
- Unconsolidated to semi-consolidated materials
- Generally quite old

EXPLANATION Thickness of uncor aquifers, in fee 50 200 400 600

SCALE 1:4,000,000

Basin-fill aquifers

- These features reflect the washing of sediments into a bowl
- Alluvial fan deposits around the edge
- Lake sediments toward the center
- Evaporite deposits in larger basins under desert conditions

 The material is generally from the uplands that surround them – glacial deposits and volcanic ash also in some basins

Basin-fill aquifer hydrology

- Some basins are actually a "tank"
- Water sheds into them from surrounding mountains
- Some water leaks vertically or laterally through the rock
- Much water is stored
- Well production varies
- Much water evaporates, creating salt flats and "soap" lakes
- Water quality often an issue

Regulatory discussion

- Water rights needed for non-exempt wells
- Closed basins might not be ESA issue so instream flows not always important
- More important to check water quality since some eastside basins are not suitable for DOH applications
- Since these are closed systems, over-allocation is a bigger problem (aquifer water levels may be declining – check)

Basin-fill aquifers discussion

Fractured rock aquifers

Fractured-rock environments

Fractured-rock environments

- This section is about the rock "aquifers" outside of the basalt regions
- Mountains have hard rock with only secondary permeability
- Some sedimentary rock found with primary permeability – but not much
- It is mostly about fractures

Fractured rock aquifer hydrology

- Structure is more like a radiator than a tank
- Fractures have very little storage
- Amount of interconnection of fractures varies – usually quite low
- Recharge typically limited
- Usually low flow and local systems

Fractured rock wells lie to you

- The instantaneous production is often higher than the aquifer will support long-term
- Fractures can be local features no storage to back them up
- Because of low storage, seasonal variability of water levels can be high
- Recognizing the best place to complete or how much to drill is an art form – trust those that know the area
- The fractured-rock setting is really tricky and very deceiving **test carefully**

Regulatory discussion

- Typical water right issues are present, but fracture patterns can strongly influence impairment
- Impacts to instream flows and springs are more likely
- County and DOH concerns regarding source reliability more likely – <u>test data more critical</u>
- Generally, the surface seal must go into the rock

Open discussion on fractured-rock aquifers

Coastal unconsolidated sediments

Coastal aquifer systems

- Coastal aquifers are usually thin and often sand-dominated – Puget Sound region is different
- Sediments can be thicker and more productive near estuaries
- Aquifers discharge directly to the sea

Geologic discussion

- Flat beaches typically dominated by sand deposits
- Steeper coastlines get gravel and even landslide deposits
- Where stream valleys are present, the valley-fill processes still dominate
- Fractured rock coastal aquifers are even more dangerous fractures can be pipes to the sea
- The coast has only been the coast in recent time, sea level was 300 feet (or more) lower 12,000 years ago – the coast was miles farther west

Hydrology of coastal aquifers

- Generally moderate storage
- Direct recharge over smaller areas
- Typically a component of recharge is from mountains to the east
- Discharge typically not focused but more uniform along the coast line
- Relatively small withdrawal from wells
- If you pump too much, the sea comes to you

Regulatory discussion

- The water right permit (often) has protocols a driller needs to follow
- Water rights usually require regular chloride testing set the well up for it
- If sea-water intrusion is suspected in an area, drilling may be restricted
- Impairment of another water right can be water quality related also (you don't have salt water but the neighbor with the beach house does)
- Test water quality of a zone before completion

Hydrogeology of the Pacific Northwest

Questions? Something to add?

DIAGRAM BY: Dee Molinaar

Feel free to contact me: Mike Krautkramer mkrautkramer@robinson-noble.com